
StackArmor: Comprehensive Protection from Stack-based
Memory Error Vulnerabilities for Binaries

Xi Chen∗ Asia Slowinska† Dennis Andriesse† Herbert Bos§ Cristiano Giuffrida§
Department of Computer Science

VU University Amsterdam, The Netherlands
∗x.chen@vu.nl, †{asia,da.andriesse}@few.vu.nl, §{herbertb,giuffrida}@cs.vu.nl

Abstract—StackArmor is a comprehensive protection tech-
nique for stack-based memory error vulnerabilities in binaries. It
relies on binary analysis and rewriting strategies to drastically re-
duce the uniquely high spatial and temporal memory predictabil-
ity of traditional call stack organizations. Unlike prior solutions,
StackArmor can protect against arbitrary stack-based attacks,
requires no access to the source code, and offers a policy-driven
protection strategy that allows end users to tune the security-
performance tradeoff according to their needs. We present an
implementation of StackArmor for x86 64 Linux and provide a
detailed experimental analysis of our prototype on popular server
programs and standard benchmarks (SPEC CPU2006). Our
results demonstrate that StackArmor offers better security than
prior binary- and source-level approaches, at the cost of only mod-
est performance and memory overhead even with full protection.

I. INTRODUCTION

While common defenses like W⊕X, canaries, and traditional
ASLR prevent naı̈ve return address overflows and code injection
attacks, they have done little to eliminate stack-based attacks
altogether. Mainly, the complexity of the attacks has increased
as attackers resort to advanced techniques like Return-Oriented
Programming (ROP) [69]. Likewise, they exploit the stack’s
predictable layout to disclose useful information, stored in
current, previous, or reused stack frames [24]. We conclude that,
despite all efforts, the stack remains a hugely attractive target
for attackers, mainly because it is an exploit-friendly contiguous
mapping with spatial and temporal allocation locality that is
entirely predictable—obviating even the need for “feng shui”
strategies on the heap [74].

In this paper, we address the problem at its root by
completely abandoning the idea of a linearly growing stack.
We statically rewrite binaries to isolate and fully randomize
the locations of stack frames and individual stack buffers,
countering both spatial attacks like overflows and temporal
attacks like stack-based use-after-frees.

While ours is an extreme solution that provides more
comprehensive protection than prior solutions, we are not the
first to argue for better stack defenses. Existing approaches
include compiler extensions [10], [11], shadow stacks [18],
[26], [28], [44], [62], [65], [70], [80], Control-Flow Integrity

(CFI) [8], [34], [82], and binary rewriting to add buffer
protection [72], but they either rely on source code and leave
binaries at the mercy of attackers, or offer only very limited
protection. Specifically, there is currently no stack protection
technique for binaries that mitigates all of the following attack
vectors: (i) buffer overwrites and overreads within a stack frame,
(ii) buffer overwrites and overreads across stack frames, (iii)
stack-based use-after-frees, (iv) uninitialized reads (in reused
stack frames). As a result, stack attacks are still rampant.
Attackers use them both to divert the control flow (and, e.g.,
start off a ROP chain) and for memory disclosures [24].

Information leakage and buffer overflow attacks, in particu-
lar, are greatly helped by the predictability of the stack layout.
Although the start is typically randomized, the stack itself
grows in an entirely predictable fashion, making the disclosure
of canaries, return addresses, or data pointers of previous stack
frames as simple as leaking uninitialized data or exploiting
buffer overreads. The same applies to exploits modifying data
in another stack frame. For example, randomization between
stack frames would have stopped recent high-profile attacks on
Asterisk [38], Xen [39], Kerberos [36], and MS Office [37].

Our focus on binaries is neither academic nor fundamental,
but important in practice: the adoption of advanced security
measures in popular compilers is slow. Compiler maintainers
are conservative and wont to reject options that incur significant
overhead. The -fstack-protector-strong option in gcc is
a case in point: it had to be tailored to a very narrow threat
model for performance reasons. As most vendors simply use
common compilers like gcc, any measure not added to it for
performance reasons will not make it into their products. Unless
they apply the defenses at the binary level, users cannot decide
for themselves to sacrifice some performance for better security.

Contributions We introduce StackArmor, a novel stack
protection technique that shields binaries from all of the above
attacks. To provide comprehensive protection, StackArmor relies
on static analysis enabled by state-of-the-art binary analysis
tools—which provide the necessary program abstractions, such
as functions and their control-flow graphs. Our static analysis
is also supported by information on the location and size of
stack objects, for example provided by debug symbols (similar
to prior binary-level protection techniques [44]) or dynamic
reverse engineering techniques [53], [71]. StackArmor can also
operate in complete absence of these, by gracefully reducing
its (intra-frame) protection guarantees. Using binary rewriting
to instrument call and return instructions, StackArmor provides
tailored protection based on application-specific performance
and security requirements. In full protection mode, StackArmor
relies on a combination of randomization, isolation, and secure

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8-11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23248

(b) ASLR(a) Original (d) StackArmor(c) Shadow Stack

B

A

C

Return address

Return address

Return address

varC1:
varC2:

varB1:

buffA1:

varA1:
varA2:

buffB1:
buffB2:

C

.

.

.

.

.

Return address
varC1:
varC2:

B

A

Return address
varA1:
varA2:

buffA1:

rand()

rand()

Return address
varB1:

buffB1:
buffB2:

rand()

rand()

B

A

C

Return address

Return address

Return address

varC1:
varC2:

varB1:

varA1:
varA2:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

B

.

.

.

.

.

C

.

Return address
varC1:
varC2:

buffB2:

.

.

.

.

.

.

.

.

.

.

Return address
varB1:

B

A

.

Return address
varA1:
varA2:

.

.

.

.

.

B

.

.

A

buffB1:

buffA1:buffB1:

buffA1:

buffB2:

Fig. 1. Comparison of different stack protection techniques.

allocation techniques to create the illusion that all the stack
frames and the individual stack buffers are drawn from a fully
randomized space with no spatial or temporal predictability
guarantees. Unlike all the existing solutions, this strategy can
comprehensively protect against arbitrary stack-based attacks.

To summarize, our contributions are:

• We present StackArmor, a novel stack protection tech-
nique which combines inter- and intra-frame defenses
to stop arbitrary spatial and temporal attacks.

• We present an implementation of StackArmor for
x86 64 Linux. Ours is the first system that provides
such comprehensive stack protection for binaries.

• We provide a detailed experimental evaluation of
our prototype, and show that it achieves a modest
performance and physical memory overhead of 5% and
+3 MB, respectively, on average, on single-threaded
server programs, while scaling well even to heavily
threaded server programs (28% and +112 MB with
100 worker threads, on average) with full protection.

Outline: The remainder of the paper is organized
as follows. Section II provides background information on
the various classes of stack-based memory error attacks and
compares the protection guarantees offered by StackArmor with
those of prior techniques. Section III and Section IV present
the design and implementation of StackArmor and discuss
the limitations of our current prototype. Section V presents
experimental results to assess the viability and effectiveness
of our stack protection technique. Finally, Section VI surveys
related work and Section VII concludes the paper.

II. THREAT MODEL

StackArmor prevents memory error attacks exploiting spatial
and temporal locality of reference on the stack, i.e., spatial and
temporal attacks, respectively. This section briefly elaborates on
both classes of attacks and discusses the limitations of existing
stack protection techniques.

A. Spatial Attacks

Spatial attacks exploit memory errors to access data outside
the prescribed buffer bounds. Well-known memory error
examples include stack-based buffer overflows and underflows.
Attackers exploit them to corrupt memory objects with mali-
cious buffer writes, or leak secrets through unintended reads.
Attacks can target both control data, e.g., return addresses or
function pointers, and noncontrol data, e.g., variables storing
user privilege levels.

To access a target object, an attack first estimates its
address and next obtains a pointer to the target location via
a vulnerable buffer. It either exploits a vulnerable buffer and
a target object located in the same stack frame (intra-frame
attack) or in different ones (inter-frame attack). In a traditional
stack organization, both stack frames and per-frame objects are
contiguously allocated in memory, so the attack can safely rely
on the predictability of the relative distance between the buffer
and the target object.

B. Temporal Attacks

Temporal attacks exploit memory errors to access data
outside the prescribed object lifetime. Such attacks rely on
predictable memory reuse to read/write data from a newly
allocated object via a reference to a deallocated object or, con-
versely, read data from a deallocated object via a reference to a
newly allocated object. Memory errors originating these attacks
are commonly referred to as use-after-free and uninitialized
read errors, respectively. They can be successfully exploited to
corrupt or leak both control and noncontrol data.

On the stack, temporal attacks exploit erroneous memory
accesses into deallocated stack frames (via dangling pointers),
or into uninitialized stack variables containing old data. In
a traditional stack organization, stack frames are allocated
and deallocated in a predetermined order, so an attack can
determine which two objects overlap across stack frame
allocations and corrupt/leak the intended data. In this scenario,
the attack relies on the predictability of stack frame reuse
induced by stack memory allocation.

2

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment
Analyzer

Stack
Frame
Allocator

Fig. 2. High-level overview of StackArmor.

C. Defenses

Figure 1 compares the stack organization adopted by
different protection techniques to counter attacks.

Modern ASLR techniques introduce random gaps between
stack frames [18], [33] and between buffer and nonbuffer
stack objects [33]—separating and permuting them in two
adjacent per-frame regions (Figure 1b). This strategy alone
does not change the order of the stack frames nor does
it isolate vulnerable stack buffers, exposing the stack to
guessing or spraying—spatial and temporal—attacks. This
problem is exacerbated by the gaps being limited in size for
practical reasons and often statically determined for efficiency
reasons [33], resulting in even poorer randomization entropy,
stack frame reuse unpredictability, and resilience to information
leakage attacks.

Modern shadow stack techniques [18], [20], [44], [80], in
turn, isolate the vulnerable stack buffers on a separate, but
contiguous, shadow stack (Figure 1c). This strategy alone does
not prevent buffers from attacking each other in a predictable
way in intra- and inter-frame spatial attacks nor does it attempt
to protect against temporal attacks.

StackArmor, finally, completely disrupts the traditional
stack organization, creating the illusion that stack frames and
vulnerable buffers are neither temporally nor spatially adjacent
in memory, but randomly drawn and isolated from one another
(Figure 1d). This strategy prevents all the spatial and temporal
attacks considered.

III. STACKARMOR

Figure 2 illustrates the overall StackArmor architecture.
It consists of three analysis modules, a binary rewriter, and
a secure allocator. The analysis modules provide support
for the binary rewriting, while the allocator is employed to
ensure an unpredictable allocation of stack frames. In this
section, we describe the design of StackArmor and we defer
the implementation details until Section IV.

The three analysis modules statically analyze each function
found in the binary and determine what protection measures
it requires. The Stack Protection (SP) analyzer conservatively
decides which functions are not provably safe from spatial or
use-after-free attacks, so need randomized (and isolated) stack
frames. For this purpose, the analysis pinpoints functions that
compute pointers to local variables.

Functions that are not assigned randomized stack frames
still require protection from uninitialized reads. To this end,
the Definite Assignment (DA) lists functions which are not
provably safe from uninitialized variables. When such a function
is called later, StackArmor zero-initializes its relevant stack
objects, effectively creating the illusion that the stack frame has
been allocated from a random pool of zero-initialized frames
and preventing potential errors from being exploited.

The Buffer Reference (BR) analyzer identifies stack buffers
(and their references) that are provably safe to relocate. This
strategy is used to isolate potentially vulnerable stack buffers
from the original stack and prevent intra-frame spatial attacks.
To this end, the BR analyzer relies on information about location
and size of all the per-function stack objects, for example
provided by debug symbols or dynamic reverse engineering
techniques [53], [71].

Next, StackArmor combines the results of the analyses and
the Binary Rewriter instruments all functions that cannot be
conservatively proven safe. It creates a new stack frame for each
function call and for each stack buffer, while the Stack Frame
Allocator ensures at runtime that the frames are allocated in
an unpredictable manner. After statically rewriting the binary,
the resulting (armored) binary can run natively.

A. Stack Protection Analyzer

The SP analyzer employs static analysis to conservatively
identify functions that cannot be proven safe from spatial and
use-after-free attacks, so require stack protection. It classifies as
SP-unsafe all functions that compute pointers to local variables,
i.e., (i) have stack-allocated buffers, (ii) call alloca or (iii)
contain stack variables that have their address taken. Our
algorithm is inspired by the -fstack-protector-strong
option in gcc [7], which uses similar analyses—at the source
level—to identify functions prone to buffer overflows. One key
difference is that our strategy is more generally tailored to
locating any uses (and possibly leaks) of pointers into stack
objects, allowing our analyzer to also identify functions prone
to use-after-free attacks. Another difference is that operating
at the binary level raises more challenges since stack accesses
are mediated by the stack (or frame) pointer, generally subject
to aliasing.

To address this challenge, the SP analyzer overapproximates
the conditions above using a data-flow analysis over the Control-
Flow Graph (CFG) of every function. In SP-safe functions,
StackArmor allows references to stack objects only via the stack
(or frame) pointer and a constant offset. More specifically, for
every function, the SP analyzer performs a forward analysis
of its CFG and marks the function as SP-unsafe if any of the
following SP-safety rules hold:

1) The stack is accessed through the stack (or frame) pointer
and an offset stored in another register.

2) The stack (or frame) pointer or derived pointers are stored
into registers or memory outside the function’s prologue
and epilogue.

3) The stack (or frame) pointer is manipulated outside the
function’s prologue and epilogue.

Summarizing, (1) detects when a stack buffer is accessed
in its local function, (2) prohibits implicit accesses to stack

3

 function test_sp:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movl %edi, -4(%rbp)
 movq %rsi, -16(%rbp)
 movl $67305985, -24(%rbp)
 movslq -4(%rbp), %rax
 movsbl -24(%rbp,%rax), %edi
 movq -16(%rbp), %rax
 addq $15, %rax
 andq $-16, %rax
 leaq -20(%rbp), %rsi
 movq %rsp, %rdx
 subq %rax, %rdx
 movq %rdx, %rsp
 callq helper_sp
 movl -20(%rbp), %eax
 movq %rbp, %rsp
 popq %rbp
 ret

extern	void	
helper_sp(int,	int	*,	void	*);

int	
test_sp(int	i,	unsigned	long	size)
{
				int	ret;
				char	args[]	=	{1,	2,	3,	4};
				helper_sp(
								args[i],	
								&ret,	
								alloca(size));
				return	ret;
}

Fig. 3. A sample SP-unsafe function that violates all the three SP-safety rules
imposed by the BR analyzer.

variables, by confirming that their pointers are never stored
or passed to callees, and (3) detects alloca invocations (and
possibly other unsafe idioms). The example function in Figure 3
violates all the three SP-safety rules and is classified as SP-
unsafe1. To read args[i], the function accesses the stack
through %rbp and %rax—violating (1). The second rule is
violated when the function computes the address of ret and
stores the resulting %rbp-derived pointer to %rsi. Finally,
the invocation of alloca causes a manipulation of the %rsp
register, which violates (3).

While seemingly very conservative, our analysis closely
matches the behavior of modern compilers, which typically
generate very simple (and efficient) stack-accessing instructions
for functions that maintain no pointers into the stack. As shown
in Section V-C, on average, our analysis classified 80% of
functions across all the SPEC CPU2006 benchmarks as SP-
safe (geometric mean).

B. Definite Assignment Analyzer

To determine the functions (and objects) that require protec-
tion from uninitialized reads, the DA analyzer relies on static
analysis to conservatively identify all the DA-unsafe objects,
i.e., stack objects that cannot be proven as initialized before
they are first read. Our strategy is inspired by similar source-
level analyses employed in safe languages to implement zero
initialization semantics [46]. An important challenge when oper-
ating at the binary level is that object boundaries are no longer
exposed in the code in any obvious way. Another challenge
is that aliasing problems may generally prevent the analyzer
from unambiguously mapping all the accesses to stack objects.

To address these challenges, the DA analyzer relies on
two key observations. First, the functions that require ad-
hoc uninitialized read protection are only those that have
been marked as SP-safe—since the others are protected using
randomization and isolation. All the SP-safe functions, in turn,
have no buffers, pointers into the stack, or stack-accessing
instructions that our simple data-flow analysis cannot map
into a constant stack frame offset. As a consequence, these
variables are not initialized in other functions, which drastically
simplifies our definite assignment analysis, essentially reducing
it to a basic intra-procedural data-flow analysis [43]. Second,
once constant stack frame offsets are available for each load

1All the assembly snippets presented in the paper have been generated with
clang 3.3.

 function test_da:
 .LBB1_0:
 subq $24, %rsp
 movq %rdi, 16(%rsp)
 cmpq $11, %rdi
 jb .LBB1_2
 .LBB1_1
 movl $10, 12(%rsp)
 jmp .LBB1_4
 .LBB1_2:
 cmpq $2, 16(%rsp)
 jb .LBB1_4
 .LBB1_3
 movl $1, 12(%rsp)
 .LBB1_4:
 movl 12(%rsp), %edi
 callq helper_da
 addq $24, %rsp
 ret

extern void
helper_da(int);

int
test_da(unsigned long size)
{
 int arg;
 if (size > 10)
 arg = 10;
 else if (size > 1)
 arg = 1;

 helper_da(arg)
}

Control-flow graph and the DA analyzer's results:

0

1 2 3

4

12(%rsp) 16(%rsp)

safe

safe safe

safe

safeunsafe

DA result: unsafe

safe

safe

Fig. 4. A sample DA-unsafe function—on the CFG path marked with solid
arrows, the analyzer cannot prove that 12(%rsp) (containing the arg variable)
is initialized.

and store stack-accessing instruction, our analysis can simply
operate at the byte rather than at the object level.

To determine functions and stack variables that require
protection (and thus zero initialization), the DA analyzer
proceeds as follows. For every function, it traverses its CFG
in depth-first fashion and maintains a per-path tag map to
keep track of the bytes in the stack frame that have been
read or written to in the current path. For every path, a first
write-before-read event causes the DA analyzer to mark the
target bytes as path-safe and a first read-before-write event
causes the DA analyzer to mark the target bytes as path-unsafe.
If the traversal reaches an unresolved control transfer or a
function call, it marks all the bytes that are not marked at
all yet as path-unsafe. At the end, all the bytes in the stack
frame (and the function itself) that have been marked as path-
unsafe at least once are marked as DA-unsafe, thus requiring
uninitialized read protection. The example function in Figure 4
is DA-unsafe, since the analyzer cannot prove that on each
CFG path, the stack location 12(%rsp) (containing the arg
variable) is written before it is read.

C. Buffer Reference Analyzer

For each function, the BR analyzer determines which stack
buffers can be safely isolated in separate frames, i.e., while
making sure that all references to these buffers are detected and
relocated as well. The isolation serves as a protection against
intra-frame spatial memory corruption attacks.

To this end, the BR analyzer performs an intra-procedural
static analysis to unambiguously map all the instructions taking
stack addresses. StackArmor can safely isolate a buffer only
if it proves that none of its references are ever used to access
other memory regions. Even though the BR analyzer relies
on the available information on the location and size of all
the stack objects (as provided by debug symbols or dynamic
reverse engineering techniques [53], [71]), the mapping poses
significant challenges. First, the stack (or frame) pointer is
subject to aliasing. Another difficulty is that unlike source-level

4

 function test_br:
 pushq %rbp
 movq %rsp, %rbp
 pushq %rbx
 andq $-64, %rsp
 subq $192, %rsp
 movq %rsp, %rbx
 movq %rdi, 160(%rbx)
 addq $15, %rdi
 andq $-16, %rdi
 movq %rsp, %rdx
 subq %rdi, %rdx
 movq %rdx, %rsp
 leaq 64(%rbx), %rdi
 leaq 60(%rbx), %rsi
 callq helper_br
 movl 60(%rbx), %eax
 leaq -8(%rbp), %rsp
 popq %rbx
 popq %rbp
 ret

 movq %rsp, %rbx
 movq %rdi, 160(%rbx)
 # ...
 leaq 64(%rbx), %rdi
 leaq 60(%rbx), %rsi
 callq helper_br
 movl 60(%rbx), %eax

%rsp

%rsp
%rsp 64(%rsp)

60(%rsp)

extern void
helper_br(char*,int*,void*);

int
test_br(unsigned long size)
{
 char buff[64]
 __attribute__ ((aligned(64));

 int ret;

 helper_br(
 buff,
 &ret,
 alloca(size));
}

source:

sink:

sink:

Propaga�on of an explicit stack reference performed by the BR analyzer:

Fig. 5. A sample function with an ambiguous stack reference—the %rbx base
pointer, derived from %rsp, is used to access two separate objects on the stack:
the ret variable located at 64(%rbx) and the buff object at 60(%rbx).

solutions [10], we cannot assume that the relative layout of
independent objects in memory is undefined. At the binary
level, references to stack objects are inherently ambiguous—
due to intra-procedural compiler optimizations, a reference to
an object could be later used to access a completely different
object inside a function.

Figure 5 illustrates the problem. In this example, clang
reserves a dedicated base pointer (%rbx) to access stack
objects. The function prologue sets up the pointer to point
to the bottom of fixed-size portion of the stack, i.e., excluding
stack space dedicated to Variable-Length Arrays—or VLAs.
In our example, this behavior is induced by the presence of
stack alignment for the buff object and the VLA allocated
on the stack using alloca [64]. gcc handles this situation
in a similar way, mediating the necessary accesses to stack
objects with a dedicated Dynamic Realigned Argument Pointer
(DRAP) register (typically %r10) [49]. Using an additional
register to access the stack causes a stack reference (i.e.,
movq %rsp, %rbx) to be used to access distinct stack objects
(i.e., buff and ret) before calling helper_br. As detailed in
the figure, the BR analyzer detects the ambiguity and refuses
to remap the stack references for the given function.

The algorithm implemented in the BR analyzer operates in
two steps. First, for each function, it identifies and propagates
all the explicit stack references down the CFG. The mechanism
is inspired by the way prior techniques [73], [75] use constant
propagation to discover targets of indirect calls. Next, the
analysis verifies that each reference targets a single stack object.

In the first step, the BR analyzer runs an intra-procedural
flow-sensitive static data-flow tracking analysis [30] to deter-
mine where stack addresses are dereferenced, stored to memory,
or escape the current function. It takes two types of taint seeds
present in the instructions of the CFG: constants and explicit
stack references, i.e., operands of the form rsp+offset or
rbp-offset, where offset is an immediate value. It considers
each reference in turn and treats this reference and all the
constants as tainted. With this setup, for each control-flow path,
it propagates the tainted values down the CFG, in a depth-first

Frame5MapLogical5Frames

B

A

C

Return5address

Return5address

Return5address

varC1:
varC2:

varB1:

buffA1:

varA1:
varA2:

buffB1:
buffB2:

.

.

.

Physical5Frames

0

Rmax

.

.

.

.

.

.....
PF1

PF2

PF3

PF4

PF5

PF6

PFF

Fig. 6. StackArmor’s stack frame allocation strategy.

fashion and builds up expressions representing the computed
values. When the propagation reaches a sink instruction, it
labels the propagated reference as follows:

1) If the sink is an instruction accessing memory at an address
tainted by the reference:
– If the address evaluates to a single stack location,

the analysis locates the target stack object, labels the
reference accordingly, and continues the propagation;

– Otherwise, e.g., if the address contains an unresolved
index, the analysis labels the reference as unknown
and stops.

2) If the sink is an instruction storing a value tainted by the
reference to memory, the analysis conservatively assumes
that it is a valid pointer and proceeds as in (1).

3) If the sink is a call instruction and a register holds a
value tainted by the reference, the analysis conservatively
assumes that this register may contain a valid pointer and
proceeds as in (1).

Once the propagation completes, the analysis verifies that
across all the paths, each reference is labeled with exactly one
known object (i.e., a buffer). If this check fails, the analysis
conservatively reports no buffers for the current function. If
each reference can be successfully mapped into a single stack
buffer, in turn, the analysis reports on all the buffers and all
the stack-referencing instructions that reference those buffers.
Note that, since our analysis is fully conservative, it may
occasionally fail to isolate some buffers (see Section V) but it
also allows for no false positives—which would otherwise result
in instrumentation-induced undefined behavior—in practice.

D. Stack Frame Allocator

Figure 6 depicts the allocation strategy adopted in our
stack frame allocator. For each thread call stack, the allocator
maintains a pool of F contiguous physical frames (PFs), all
preallocated in a random region of the virtual address space.
Each physical frame consists of D data pages surrounded by 1
guard (nonmapped) page to isolate frames from one another.
To map individual logical frames into one or more physical

5

stack frames of D + 1 pages, our allocator relies on a frame
map of F preallocated entries, each initialized with a pointer
to a physical frame. At runtime, the frame map is managed
similarly to a stack using a dedicated index. Allocating a frame
entails fetching the next entry and decrementing the index,
which is again incremented at deallocation time.

To ensure that the relative distance between physical frames
is unpredictable, the entries in the frame map are initialized
with a random permutation of the physical stack frames. This
static randomization strategy efficiently protects against spatial
attacks, but is alone insufficient for temporal attacks, since
the entries in the frame map can still be predictably reused
across consecutive calls—e.g., in a loop. To protect against
temporal attacks, our allocator performs in-place frame map
randomization, swapping the next entry with the entry located
at a random offset R ∈ [1;Rmax] before allocating a new
frame. R is computed using a global counter and a random
number provided by the new rdrand x86 instruction. This
in-place randomization strategy eliminates the need for free
lists and efficiently satisfies all our requirements.

In addition, to minimize physical memory consumption—
instrumented stack frames are allocated at page granularity with
low reuse—and comply to the restrictions on the maximum
number of (guarded) virtual memory areas (VMAs) imposed
by the operating system—i.e., 65,535 on stock Linux—our
allocator retains fine-grained control over the memory pages pre-
allocated in the stack frame pool using predetermined soft limits.
In particular, while the parameter F establishes the maximum
number of active stack frames, its soft limit FSL determines
how many frames are immediately made available to each
application thread. The other F−FSL frames are initially all
mapped as consecutive inaccessible pages—and thus accounted
as a single VMA by the operating system. Every time a thread
exhausts its currently available physical frames, our allocator
doubles the value of the soft limit FSL and remaps the new
physical frames correctly. This strategy is crucial to increase
the number of guard pages—and thus decrease the number of
VMAs available to the program—only when strictly necessary.

A similar adaptive strategy is used to manage the individual
physical stack frames. The soft limit DSL determines how
many data pages are immediately made available to each stack
frame. The other D−DSL pages are initially all mapped as
inaccessible. In rare cases in which more space is needed
by the current stack frame, a user-level page fault handler
(i.e., signal handler intercepting SIGSEGV signals) is used to
increase DSL on demand using the same exponential growth
strategy described earlier. The soft limit DSL is restored at its
initial value only at stack frame deallocation time. Restoring the
original soft limit also entails returning the extra memory pages
to the operating system (i.e., using POSIX’s MADV_DONTNEED,
similar to [9]) and remapping them as inaccessible. This strategy
is crucial to minimize physical memory consumption in (rare)
cases of functions using a large amount of stack space and
being potentially assigned by our allocator a different (random)
physical stack frame at each invocation.

Our allocator allows users to fine-tune the individual
configuration parameters, but also supplies carefully chosen
default values that we found effective in common real-world
programs. The parameter Rmax controls the entropy of our
in-place randomization strategy, but may also increase the

OriginalpFrame

Callpargs

Returnpaddress

1

4

.....

ArmoredpFrame

Callpargs

Returnpaddress

.....
2

3

PushedpbypCPUp(callpinstr.)

CopiedpbypSA (beforepcall)2

3CopiedpbypSA (beforepret)

PushedpbypCPUp(beforepcall)1

4

Returnpaddress

Newp%rsp

Oldp%rsp

SavedpContext

Fig. 7. StackArmor’s call site instrumentation strategy.

StackArmor-induced memory usage—due to more resident
physical frames—and performance overhead—due to poorer
data cache locality. By default, StackArmor opts for the
maximum-entropy configuration Rmax=FSL in nonthreaded
programs while gradually decreasing the per-thread value of
Rmax (and FSL accordingly) with the number of active threads
in multithreaded programs (−5% for each newly created thread,
with a minimum Rmax=FSL=128). This strategy is crucial
to strictly bound physical memory consumption in heavily
threaded programs. We evaluate the performance and memory
impact of this choice in Section V.

The maximum number of active stack frames F and its soft
limit FSL, in turn, default to 16, 384 and 1, 024 (respectively),
values that do not aggressively reduce the maximum number of
VMAs available to the program—i.e., 39% reduction on stock
Linux for a program with 100 active threads within the soft
limit—but can elastically adapt to programs with fairly deep
instrumented call stacks. The number of per-frame data pages
D and its soft limit DSL, finally, default to the OS-specified
maximum stack size for the program—i.e., 2,048 pages on
stock Linux—and 0.1 ·D (respectively), values that yield a
conservative stack allocation strategy while providing strong
physical memory consumption guarantees.

E. Binary Rewriter

The binary rewriter relies on the information provided by
the analysis modules to guide the instrumentation process. First,
it instruments all the call sites invoking SP-unsafe functions
allowing each caller to set up a new randomized and isolated
(i.e., armored) stack frame for the callee’s execution. The
latter is functional to protect the callee against inter-frame
spatial attacks and temporal attacks. Figure 7 depicts our call
site instrumentation strategy. Before the call instruction, the
rewriter requests the allocator to allocate the armored stack
frame, copies over all the call arguments already pushed into the
stack, and redirects the stack pointer %rsp to the new frame. The
return address, the old %rsp, and the new %rsp are all saved in a
dedicated context (maintained on a separate stack) for later use.
After the call instruction, the callee runs protected with the
armored stack and eventually returns. The rewriter instruments
the return site (ret instruction) to deallocate the armored stack
frame, restore the old %rsp, and push the saved (and trusted)
return address into the stack to allow execution to return in a
consistent way. While our call site instrumentation strategy is

6

necessary to correctly copy caller-specified arguments—whose
number may change across call sites, due to variadic calls—into
the armored stack frame, it may also complicate stack manage-
ment when caller and callee cannot be statically paired with one
another. Indirect calls, for example, need to be conservatively
instrumented since their target may be SP-unsafe—albeit not
statically known. An instrumented indirect call with a SP-
safe callee, however, would cause execution to return from a
call site with the %rsp still pointing into the armored stack
frame. To address this problem, the rewriter instruments all the
instructions following a call site which contains indirect calls,
library calls, and other special idioms—e.g., setjmp—to restore
the original stack and allow the caller to resume execution
consistently. Our setjmp instrumentation also checks if control
returned from a longjmp invocation and garbage collects all
the deeper (and thus no longer needed) physical stack frames in
that case. The complementary situation—an uninstrumented call
site with an instrumented SP-unsafe callee—is also possible,
for example when dealing with uninstrumented libraries calling
program-specified callbacks. To detect (and simply ignore) this
situation, the return site instrumentation checks if the current
%rsp is lower than the new %rsp in the most recent saved
context. Our instrumentation strategy can efficiently handle
all the caller-callee combinations—i.e., instrumented caller
and callee, uninstrumented caller and callee, instrumented
caller and uninstrumented callee, and uninstrumented caller
and instrumented callee—in a conservative way, allowing
unrestricted use of shared libraries and arbitrary optimizations
driven by our static analyzers.

To protect against intra-frame spatial attacks, in turn, the
rewriter instruments all the SP-unsafe functions with buffers
reported by the BR analyzer. In particular, it first instruments
the entry site (i.e., after the function prologue) to relocate each
buffer reported in a new stack frame provided by the allocator.
Second, it remaps all the stack-referencing instructions reported
by the BR analyzer to reference the corresponding buffers in
their own independent frames. Such frames are later garbage
collected when the main armored frame is deallocated.

To protect the remaining SP-safe functions against uninitial-
ized reads, finally, the rewriter instruments the necessary entry
sites to zero-initialize all the stack regions reported by the DA
analyzer. To implement efficient zero initialization semantics,
the rewriter also coalesces multiple bzero writes into the same
memory word (8 bytes).

IV. IMPLEMENTATION

We implemented StackArmor to instrument 64-bit ELF
binaries for the Linux x86 64 platform, but our prototype
is easily portable to other UNIX systems. As StackArmor is
built on top of PEBIL [52], it performs static instrumentation,
i.e., it inserts additional code and data into an executable, and
generates a new armored binary with permanent modifications.
We first discuss the requirements for the disassembly process
imposed by StackArmor and then we present some details
of the instrumentation. We conclude with limitations of the
current implementation.

A. Binary Disassembly and Analysis

StackArmor’s static analyses require information about
instructions, basic blocks, CFGs, and functions present in a

binary. While we do not claim any contributions in the area
of binary disassembly and we use existing tools, we show that
StackArmor relies only on the correctness of disassembly and
not its completeness. It is designed to cope with incomplete
information—it gracefully reduces security guarantees without
breaking the binary. Finally, we discuss what other assumptions
StackArmor makes.

Incomplete disassembly. In principle, it is not feasible to
fully disassemble arbitrary stripped x86 binaries statically [73],
[78]. Due to indirect control flows and interleaving code
and data, disassembly can be imprecise, so we get possibly
incomplete information on instructions, basic blocks, CFGs,
and functions. At the same time, binary disassembly is subject
to active research [12], [13], [83] and our experience with
standard tools that support both symbol and non-symbol based
CFG reconstruction (Dyninst [16]) shows that lack of symbols
is hardly a concern in practice if 100% accuracy is not strictly
required (on SPEC benchmarks we missed only 1/12357
functions and 7/325173 basic blocks and edges due to lack of
debug information).

Unresolved jumps: The first consequence of incomplete
disassembly are unresolved jmp instructions, i.e., indirect jumps
whose targets remain unknown. All the static analyses behave
in a conservative way: the SP analyzer classifies a function
with an unresolved jump as SP-unsafe, so the DA analyzer
does not even consider it and the BR analyzer labels all its
buffers as unknown. The rewriter, in turn, sets up a new and
isolated stack frame for this function. If the rewriter misses and
does not instrument a return instruction, StackArmor handles
this case with no trouble, as we discussed in Section III-E.

Unresolved calls: StackArmor also needs to deal with
unresolved indirect call instructions. Similarly to unresolved
jumps, the three static analyses report conservative results. An
unresolved call does not, however, influence the instrumenta-
tion of the caller function.

Missing functions: Since StackArmor is not aware of
functions missed due to incomplete disassembly, it simply does
not analyze or instrument them. As discussed in Section III-E,
the binary rewriter ascertains that the binary works well even
if an instrumented function calls an uninstrumented one, and
the other way round.

Summarizing, in the presence of incomplete disassembly,
StackArmor always errs on the safe side. If necessary, it just
excludes a function from analysis and protection, so it executes
as in the vanilla version of the binary.

Stack pointers and function prologue. The three StackAr-
mor’s static analyses (Sections III-A-III-C) consider ex-
plicit stack references, i.e., instruction operands of the form
rsp+offset or rbp-offset. While this definition of an
explicit stack reference assumes the special role of the rsp and
rbp registers, StackArmor’s actual implementation does not
rely on rbp containing the base pointer. If, due to optimizations,
rbp does not point to the beginning of the frame, nothing bad
happens—the analyses are limited to the references derived
from the rsp register. To detect and examine function prologues,
StackArmor follows the ABI for x86 64/Linux [55]. Observe
that rsp, however, is a sacred register, whose value is required
by the important push, pop, call, and ret instructions. Thus,
in practice, there is no reason why a program would ever use

7

rsp for anything else than the current stack position and we
can therefore safely rely on its usage.

Function arguments. As we said in Section III-E, before
a call instruction, the binary rewriter copies over all the
call arguments already pushed into the stack. It examines the
basic block containing the call instruction and checks how
many bytes to transfer. Our argument-copying strategy poses
very little restriction on the calling convention: (a) stack-based
argument passing is done in a single basic block, (b) arguments
are callee-owned. Even though it is possible to extend our
prototype to an even more general solution as proposed in [12],
[13], we are not aware of any calling convention violating (a)-
(b)2. Our implementation was correct in all the server programs
and standard benchmarks we tested.

B. Instrumentation

Our binary rewriter is implemented on top of PEBIL [52],
an efficient binary instrumentation tool for Linux. PEBIL can
place hooks in arbitrary binary points to call a predetermined
handler enclosed in a shared library, with the instrumenta-
tion automatically saving and restoring registers to create a
consistent execution context.

For our purposes, we extended the original PEBIL tool in
three ways. First, we allowed only registers effectively used in
StackArmor’s handler—which does not rely on external library
calls on the instrumentation path—to be saved and restored at
each invocation to minimize context switching costs at function
entry/exit time. Second, we implemented support for handlers
enclosed in a static library—injected by our rewriter into the
binary—eliminating the costs associated with indirect PLT calls
on the instrumentation path. This change enabled StackArmor’s
stack frame allocator to be entirely implemented and compiled
into a static library with efficient position-dependent code.
Finally, we allowed PEBIL to access Thread-Local Storage
(TLS), where our instrumentation stores references to per-thread
metadata and stack frames managed by our allocator. Our
current implementation completely allocates/deallocates per-
thread data structures at thread creation/destruction time by
default, but adopting more efficient pooling strategies—not
necessary for our test programs—is straightforward.

One limitation of PEBIL is that it relies on debug symbols
to generate a list of functions present in a binary and their CFGs.
This is, however, not a limitation of StackArmor, but of the
tool we used for familiarity. As we discussed in Section IV-A,
StackArmor is designed to handle incomplete disassembly while
gracefully reducing its security guarantees, without breaking
the binary. At the same time, recent research shows how to
disassemble stripped binaries [13], [83], as well as locate
functions and resolve (at least some) indirect control flows
with the aim of generating CFGs [12]. Thus, StackArmor’s
prototype could be ported to other binary rewriting frameworks,
such as Dyninst [16], which can operate even in the absence
of relocation and debug symbol information.

2The tail call optimization violates (b) but even that does not require copying
back callee-owned arguments given that the callee returns directly to the caller
of the caller.

C. Limitations

The main limitation of the current StackArmor
implementation—inherited from PEBIL—is the inability to
support C++-style exceptions. This limitation—addressable
with additional effort—did not prevent our prototype from
running all the popular server applications and benchmarks
considered in our evaluation.

V. EVALUATION

We evaluated StackArmor on a workstation equipped with
an Intel i7-4770K CPU clocked at 3.90 GHz, a 256 KB per-core
cache, an 8 MB shared cache, and 8 GB of DDR3-1600 RAM.
We ran all our tests on an Ubuntu 12.10 installation running
Linux kernel 3.12 (x86 64).

For our evaluation, we selected lighttpd (v1.4.28)—a
popular web server—vsftpd (v1.1.0)—a popular FTP server—
the OpenSSH Daemon (v3.5)—a popular SSH server—and
exim (v4.69)—a popular email server. To benchmark lighttpd,
we relied on the Apache benchmark [1] configured to is-
sue 25,000 requests with 10 concurrent connections and 10
request/connection. To benchmark vsftpd, we relied on the
pyftpbench benchmark [3] configured to open 100 connections
and request 100 1 KB-sized files per connection. To benchmark
OpenSSH and exim, finally, we relied on the OpenSSH
test suite and a homegrown script repeatedly launching the
sendemail program [4], respectively. To stress our StackArmor
prototype in memory-intensive scenarios and better investigate
the performance-security tradeoffs, we also considered all the
C programs in the SPEC CPU2006 benchmarks. To guide our
BR analyzer, finally, we generated the necessary information
on the location and size of stack objects from debug symbols.
This allowed our BR analyzer to identify (and isolate) 90.7%
of the buffers on average across all our programs. We ran all
our experiments 11 times—while checking that the CPUs were
fully loaded throughout our tests—and reported the median.

Our evaluation answers 4 key questions: (i) Security: Is
StackArmor effective in protecting against both spatial and tem-
poral stack-based attacks? (ii) Performance: Does StackArmor
yield acceptable run-time overhead across all the configurations
supported? (iii) Memory usage: How much memory does
StackArmor require? Multithreading support: Does StackArmor
perform and scale well in multithreaded programs?

A. Security Against Spatial Attacks

To evaluate the security guarantees offered by StackArmor
against spatial attacks, we measured the attack surface
reduction induced by our protection techniques. Our definition
of attack surface quantifies both the number of vulnerable
targets (i.e., stack-allocated objects) and the number of
offenders (e.g., stack-allocated buffers) in intra-frame and
inter-frame attack scenarios.

Intra-frame attack surface reduction. The intra-frame
attack surface Sintra(f) of a given function f quantifies the
extent to which the Nf objects—noncontrol and control data
including the return address—allocated in f ’s stack frame are
exposed to buffer overflow/underflow attacks using any of
the Bf stack-allocated buffers in the same frame during the
execution. More formally:

8

TABLE I. MEAN ATTACK SURFACE REDUCTION FOR ALL THE
FUNCTIONS WITH STACK-ALLOCATED BUFFERS.

Intra-frame Inter-frame

Shadowing StackArmor Shadowing StackArmor
(Source) (Source)

lighttpd 100.0% 100.0% 99.0% 99.9%
exim 96.1% 96.8% 97.2% 99.9%
OpenSSH 93.2% 94.4% 94.0% 99.9%
vsftpd 100.0% 100.0% 99.6% 99.9%

SPECgm 91.5% 95.95% 94.6% 99.9%

Sintra(f) =

Bf∑
i=1

Nf∑
j=1

canAttack(i, j) ? 1 : 0

When our BR analysis achieves full coverage, StackArmor’s
protection strategy reduces the original intra-frame attack
surface Bf ·Nf (induced by a traditional stack organization) to
0 (no buffer can predictably attack other intra-frame objects).
In general, however, the intra-frame attack surface reduction
is subject to the precision of our BR analysis. Table I shows
the mean intra-frame attack surface reduction across all the
functions with stack-allocated buffers, also comparing against
traditional shadow stack techniques in the ideal case—source-
level, with all the buffers remapped.

As shown in the table, StackArmor yields a high attack
surface reduction across all our test programs—94.4% worst-
case reduction for OpenSSH—even successfully isolating all the
stack-allocated buffers for lighttpd and vsftpd. Encouragingly,
the reduction is comparable and even higher than traditional
shadow stack techniques, which typically rely on source code
to implement a precise BR analysis strategy but also fail to
prevent individual per-frame buffers from attacking one another.

Inter-frame attack surface reduction. To provide a prac-
tical definition of inter-frame attack surface, we consider the
extent to which an attacker can overflow into the stack frame of
all the possible callers of every given function f—an attacker
could potentially overflow into any active stack frame, but the
spatial predictability guarantees are progressively reduced as
we move higher in the call stack and consider all the possible
caller-callee combinations. A hypothetical attacker that reliably
predicts the caller g of the currently executing function f can
potentially rely on all the buffers in f to overflow into any of
the objects in the stack frame of g—an attack model completely
defeated by StackArmor’s protection strategy. In a more generic
attack model, in turn, the inter-frame attack surface Sinter(f)
of a given function f is subject to the probability pk of the
stack frame of the caller k—i.e., a function in the set of the
Cf callers of f—being active on the call stack before that of
f . More formally:

Sinter(f) =

Cf∑
i=k

[
pk ·

Bf∑
i=1

Nkf∑
j=1

canAttack(i, j) ? 1 : 0
]

To concretely compute Sinter(f) and its reduction induced
by StackArmor for our test programs, we assume pk to be
a uniform distribution (for simplicity), that is, pk = 1/Cf

for a traditional stack organization and pk = 1/Rmax for
StackArmor, with the swap size Rmax set to 1, 024 in our
experiments. To accurately identify the set of Cf callers for
every given f , we performed static callgraph analysis of
our test programs using the LLVM compiler framework [50].
Our implementation relies on data structure analysis [51], an
efficient context-sensitive and field-sensitive points-to analysis
to conservatively analyze function pointers used in indirect calls.
Table I reports our findings, comparing the mean inter-frame
attack surface reduction across all the functions with stack-
allocated buffers induced by StackArmor against the reduction
induced by traditional (source-level) shadow stack techniques.

As the table shows, StackArmor yields a very high inter-
frame attack surface reduction across all our test programs—
99.9% in all the cases—and consistently higher than traditional
source-level shadow stack techniques. The higher reduction re-
ported compared to our intra-frame analysis highlights the effec-
tiveness of StackArmor in greatly increasing the randomization
entropy in probabilistic attack models. Even when compared
to prior source-level stack randomization strategies [18], [47]
that introduce random gaps between objects, StackArmor yields
much stronger randomization guarantees, given that logically
contiguous objects (and frames) are guaranteed to be physically
nonadjacent in memory by construction.

B. Security Against Temporal Attacks

To evaluate the security guarantees offered by StackArmor
against temporal attacks, we analyzed the unpredictability of
stack frame reuse. To this end, we measured the effectiveness
of StackArmor in generating a seemingly random sequence
of physical stack frame addresses at runtime. For each of the
benchmarked programs, we evaluated the randomness of such
sequence observed under four configurations: (1) Baseline, (2)
StackArmor with Rmax=0, (3) ASLR, and (4) StackArmor with
Rmax=FSL= 1, 024. Our ASLR implementation dynamically
generates random inter-frame gaps g ∈ [0; 40 KB] using
the rdrand instruction. This strategy already yields higher
entropy than modern ASLR techniques [18], [33], which allow
deterministic [18] or periodic [33] stack frame reuse in loops,
or use statically generated random inter-frame gaps [33].

To measure randomness of a sequence of stack frames,
we conducted a nonparametric hypothesis test for random-
ness (Bartels’ rank test [14]), where we assumed as a null
hypothesis that the sequence is generated randomly. For
the first two configurations, p-values are consistently lower
than 1.9e − 7, while always lower than 9.3e − 3 for ASLR.
Summarizing, in the first three configurations, we can reject
the null hypothesis at the significance level α = 0.01, which
confirms highly predictable stack frame reuse. In contrast,
StackArmor’s default configuration (Rmax = FSL) reported
high p-values ∈ [0.37; 0.90], meaning that we cannot reject the
null hypothesis. This result confirms the randomness of the
sequence generated by StackArmor, yielding truly unpredictable
stack frame reuse and strong protection against temporal attacks.

C. Performance

StackArmor’s protection strategy introduces run-time per-
formance overhead due to the costs associated with random
stack frame allocation—for the logical stack frames and

9

TABLE II. StackArmor-INDUCED BENCHMARK RUN
TIME NORMALIZED AGAINST THE BASELINE.

Basic +Intra-frame +UZero

lighttpd 1.06x 1.07x 1.10x
exim 1.01x 1.04x 1.05x
OpenSSH 1.00x 1.01x 1.01x
vsftpd 1.00x 1.01x 1.04x

SPECgm 1.16x 1.22x 1.28x

the individual per-frame buffers—and zero initialization—for
uninitialized (and nonrandomized) per-frame objects. Table II
isolates these costs in different configurations, depicting the
resulting StackArmor-induced benchmark run time normalized
against the baseline. The Basic column reflects the behavior
of StackArmor when only mapping the necessary logical stack
frames into random physical frames maintained by our allocator.
This configuration ultimately results in a basic inter-frame
(and return address) protection strategy—16% overhead on
SPEC (geometric mean) but generally low overhead (6% in
the worst case) across our server programs. The +Intra-frame
column reflects StackArmor’s behavior when also enabling
intra-frame protection. As shown in the table, isolating the
individual per-frame buffers in independent stack frames only
marginally affects the run-time overhead—+6% worst-case
overhead increase compared to Basic on SPEC (geometric
mean). The +UZero column, finally, reflects StackArmor’s
default configuration, with intra-frame+inter-frame protection
and zero initialization. As shown in the table, despite the
elimination of unnecessary initializers driven by our definite
assignment analysis, zero initialization does introduce extra
costs, yielding the final overhead of 28% for SPEC (geometric
mean) and 10% (in the worst case) across our server programs.

To better investigate the factors contributing to the per-
formance overhead, we also measured the number of cycles
and instructions required to complete the SPEC benchmarks
across the configurations above and two extra (synthetic)
configurations: (i) Rewriter only, which isolates the cost to jump
into StackArmor’s handler and back; (ii) Rewriter+Allocator,
which isolates the additional stack frame allocation/deallocation
costs. Figure 8 presents a number of interesting findings.
First, cycles and instructions yield very similar overhead
distributions across all the benchmarks, demonstrating that,
despite StackArmor’s “locality-unfriendly” design for securing
the stack, the reported overheads mainly stem from new
instructions added by our instrumentation rather than poorer
cache locality—we observed marginal differences in L1 and L2
code/data cache misses across the different configurations. Sec-
ond, the Rewriter only configuration shows that binary rewriting
costs—e.g., saving/restoring registers—dominate the overhead,
with the allocation costs (Rewriter+Allocator configuration)
ranking as a close second. Encouragingly, our optimizations
resulted in all the other costs proving generally less significant.
For comparison, more naı̈ve protection strategies seeking to
instrument all the functions with (i) randomized stack frames or
(ii) full-coverage zero initialization would result in a worst-case
overhead of 719% or 14,700% (perlbench), respectively. Finally,
our reported overhead results are significantly skewed by heavily
recursive benchmarks such as perlbench—the geometric mean
would typically experience a 10% reduction without the latter.

 1.0x

 1.5x

 2.0x

 2.5x

 3.0x

perlbench

bzip2

gcc

m
cf

m
ilc

gobm
k

hm
m

er

sjeng

libquantum

h264

lbm

spinx3

g−m
ean

N
or

m
al

iz
ed

 #
cy

cl
es

, #
in

st
ru

ct
io

ns

+UZero
+Intra−frame
Basic
Rewriter+Allocator
Rewriter only

Fig. 8. StackArmor-induced SPEC performance overhead.

To understand the impact of our static analyses on the run-
time behavior, we also allowed StackArmor to report detailed
statistics on instrumented functions and call stacks during the
execution of our SPEC benchmarks. Table III presents our
findings. The first four grouped columns report the total number
of functions for each benchmark and those marked as SP-
or DA-unsafe—with their respective ratios compared to SP-
and DA-safe functions detailed in the second three grouped
columns. The last two grouped columns, in turn, detail the
maximum stack depth (maximum number of physical stack
frames allocated by StackArmor at any point in time during
the execution) and the maximum frame size (maximum size
measured across all the physical stack frames allocated by
StackArmor during the execution).

Our results demonstrate that our static analyzers are effective
in significantly reducing the instrumentation overhead. In
particular, our SP analyzer reported only 20% of the functions
as unsafe on average (geometric mean). Encouragingly, this
comes close to the 16% (geometric mean) of the functions
reported as unsafe by similar source-level analyses—i.e.,
-fstack-protector-strong, with results reported in the SP-
unsafe (Source) column—despite operating at the binary level.
In addition, over all the SP-unsafe functions reported, our
BR analyzer was able to correctly identify 92.8% of the total
number of buffers found (geometric mean). Our DA analyzer, in
turn, reported 52% of the functions as unsafe, while instructing
our binary rewriter to zero-initialize only 42% of the stack
objects analyzed in those functions on average. The impact of
the SP analyzer is particularly evident when examining stack-
related statistics. With a small number of SP-unsafe functions,
only a small fraction of function calls is instrumented and
thus assigned a new physical stack frame by StackArmor. This
is reflected in a worst-case maximum depth value of only
394 frames (perlbench), which never caused our allocator
to dynamically increase the soft limit FSL in our default
configuration FSL = 1, 024. The vast majority of function
calls, in turn, runs completely uninstrumented, thus efficiently
reusing the physical stack frame naturally inherited from the
caller. This is reflected in the relatively large values reported
for the maximum stack frame size (10.4 KB, geometric mean).
Such values never cause our allocator’s user-level page fault
handler to dynamically increase the soft limit DSL in our
default configuration DSL = 0.1 ·D = 205, while preserving
adequate memory usage guarantees (Section V-D).

10

TABLE III. StackArmor-REPORTED STATISTICS FOR THE SPEC CPU2006 BENCHMARKS.

Functions (#) Functions (Ratio) Stack

Total SP-unsafe SP-unsafe DA-unsafe SP-unsafe SP-unsafe DA-unsafe Max depth Max frame
(Source) (StackArmor) (Source) (StackArmor) (KB)

perlbench 1,885 397 409 1,227 0.21x 0.22x 0.65x 394 8.7
bzip2 112 18 22 48 0.16x 0.20x 0.42x 4 10.2
gcc 5,630 846 972 3,499 0.15x 0.17x 0.62x 48 54.2
mcf 33 1 4 17 0.03x 0.12x 0.52x 80 82.8
milc 244 73 77 91 0.30x 0.32x 0.37x 9 80.5
gobmk 2,690 335 337 1,351 0.12x 0.13x 0.50x 5 5.5
hmmer 548 118 121 324 0.22x 0.22x 0.59x 1 2.8
sjeng 153 41 42 73 0.27x 0.27x 0.48x 2 1.1
libquantum 127 27 31 56 0.21x 0.24x 0.44x 1 2.0
h264ref 599 101 105 391 0.17x 0.18x 0.65x 4 2.7
lbm 29 5 8 14 0.17x 0.28x 0.48x 30 26.3
sphinx3 380 57 59 218 0.15x 0.16x 0.57x 4 21.4

SPECgm 332 54 66 172 0.16x 0.20x 0.52x 9 10.4

Compared to prior stack-based solutions, our reported
overheads are generally higher than source-level stack ran-
domization strategies [18], [33]—which, however, offer poorer
entropy and isolation guarantees—and comparable to traditional
shadow stack strategies [18], [20], [26], [28], [44], [62],
[70], [77], [80]—which, however, offer a narrower protection
model. In the latter case, a direct benchmark comparison is
plausible with the SPEC (INT2000) results reported in [70],
which evaluate the impact of a binary translation-based return
address shadowing strategy. The latter yields 17% overhead
(geometric mean), comparable to our SPEC overhead for
Basic, which, in turn, also includes inter-frame protection. The
small performance difference shows the effectiveness of our
stack protection analysis in eliminating the need for pervasive
stack instrumentation. Overall, we believe StackArmor provides
realistic performance for real-world programs, supporting a
much more comprehensive strategy than prior solutions in the
default configuration, while allowing users to tune the security-
performance tradeoff according to their needs.

D. Memory Usage

StackArmor’s stack frame allocation strategy translates to
higher virtual and physical memory usage. Since virtual memory
is a plentiful resource in modern (x86 64) systems, we focus
our analysis on the latter. For this purpose, Figure 9 depicts
the resident set size (RSS) increase for varying values of
the maximum swap size Rmax during the execution of our
benchmarks. To thoroughly evaluate the impact of Rmax, we
configured StackArmor with the default number of maximum
stack frames and no soft limit (i.e., F = FSL = 16, 384),
allowing arbitrary values of Rmax during the execution.

The Rmax=0 configuration reflects StackArmor’s behavior
when in-place frame map randomization is disabled. In this
scenario, the RSS increase is only caused by internal fragmen-
tation, since stack frames are allocated at page granularity (0.2-
0.5 MB increase across our server programs). When in-place
frame map randomization is enabled, in turn, our allocation
strategy progressively reduces stack frame reuse, resulting in
RSS linearly increasing with Rmax. For very large values
of Rmax (e.g., Rmax = 10, 000), the allocator unrestrictedly
draws new stack frames from a large random pool of 10, 000
frames—initially all nonresident in memory—yielding very

low frame reuse and thus very high RSS increase (0.7-
118.5 MB across our server programs). The differences reported
across programs acknowledge variations in the distributions
of functions with stack-allocated buffers instrumented by
StackArmor. For example, a program continuously calling a
function f with many in-frame buffers may rapidly circle
through all the StackArmor’s physical stack frames, resulting
in all the F frames being resident in memory. This was nearly
the case for some long-running SPEC benchmarks, leading to
a consistent worst-case RSS increase for SPEC (1.6-195.1 MB
geometric mean).

Note, that while StackArmor’s protection strategy exposes
an evident randomization entropy-RSS tradeoff—controlled
by Rmax—which generally results in higher RSS than prior
stack-based solutions, our default configuration Rmax=1, 024—
which already provides reasonably high entropy, as earlier ex-
periments demonstrated—results in a worst-case RSS increase
for SPEC of only 22 MB (geometric mean).

E. Multithreading Support

To evaluate StackArmor’s ability to perform and scale well
in multithreaded programs, we selected 3 additional server
programs which rely on worker threads to process client
requests: Apache httpd (v2.2.23, mpm worker module)—a
popular web server—MySQL (v5.1.65)—a popular database
server—and Memcached (v1.4.20)—a popular memory caching
server. To evaluate Apache httpd, we relied on the Apache
benchmark [1] configured to issue 25,000 requests with T
concurrent connections and 10 request/connection. To evaluate
MySQL, we relied on the Sysbench OLTP benchmark [5]
configured to issue 10,000 transactions using a read-write
workload and T concurrent connections. To evaluate Mem-
cached, we relied on the memslap benchmark [2] configured
to issue 1,000,000 operations with a T concurrency level. We
configured each server program with T worker threads to match
the concurrency level induced by the corresponding benchmarks
and evaluated StackArmor’s performance and memory usage
impact for increasing values of T =[1; 100].

To evaluate the performance impact, we measured the
StackArmor-induced benchmark run time normalized against the
baseline, using our default configuration at full protection (intra-
frame+inter-frame protection and zero initialization enabled).

11

102

103

104

105

106

0 101 102 103 104

R
S

S
 in

cr
ea

se
 (

K
B

)

Rmax

lighttpd
exim

OpenSSH
vsftpd

SPECgm

Fig. 9. StackArmor-induced RSS increase.

Our results reported a nearly constant run-time overhead for
increasing values of T across all our programs—i.e., 29-33%
(Apache httpd), 35-37% (MySQL), and 13-15% (Memcached).
The constant run-time overhead acknowledges the marginal
impact introduced by per-thread metadata allocation (and
deallocation) performed by our instrumentation, given that
common server programs already implement their own thread
pooling strategies with worker threads rarely created (or
destroyed) on the fast path. In addition, despite its extensive use
of C++ code—which may generally result in a larger number
of (instrumented) indirect calls due to polymorphic behavior—
MySQL encouragingly reported comparable run-time overhead
to that of the other server programs.

The generally higher run-time overhead of our multithreaded
server programs compared to our nonthreaded test programs, in
turn, acknowledges the extra TLS-accessing costs incurred
by StackArmor to implement a thread-safe allocation and
instrumentation strategy. Nevertheless, such costs are strictly
bounded even in the heavily threaded T =100 configuration,
demonstrating that our design can scale efficiently to a large and
uncommon number of threads—Apache httpd, MySQL, and
Memcached run with only 25, 16, and 4 threads (respectively)
in their default configuration.

To evaluate the memory usage impact, we measured the
StackArmor-induced RSS increase compared to the baseline, us-
ing our default configuration at full protection. Figure 10 depicts
our results for an increasing number of threads T . As shown in
the figure, the RSS increase grows linearly with the number of
worker threads in all our server programs, acknowledging the
RSS impact induced by the individual per-thread stack frame
pools maintained by our allocator. Nevertheless, StackArmor’s
ability to adapt Rmax to the number of active threads results in
a gentle slope and a RSS increase of only 115 MB in the worst
case (MySQL, with T =100). This confirms that StackArmor
can scale fairly well even to heavily threaded programs, while
preserving reasonable randomization entropy guarantees at
runtime—Rmax={299, 474, 878} in the default configuration
of Apache httpd, MySQL, and Memcached (respectively).

VI. RELATED WORK

Protection from stack-based vulnerabilities. Early stack
protection systems typically rely on canary values guarding
all the per-frame objects [45] or only the return address [31]—
a technique still in use in modern compilers [7]—to verify

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

 10 20 30 40 50 60 70 80 90 100

R
S

S
 in

cr
ea

se
 (

K
B

)

Number of worker threads

Apache httpd
MySQL

Memcached

Fig. 10. StackArmor-induced RSS increase in multithreaded programs.

the stack frame integrity upon function exit. Unlike StackAr-
mor, canary-based techniques can only protect from spatial
(smashing) attacks and are extremely susceptible to information
leakage. Shadow stack techniques isolate the return address [26],
[28], [62], [70], [77] or all the per-frame nonbuffers [18], [20],
[44], [80] from potentially vulnerable per-frame buffers to limit
the exploitation power of buffer overflows/underflows. Unlike
StackArmor, such techniques are ineffective against temporal
attacks and typically limited to buffer-to-nonbuffer spatial
attacks. Traditional Address Space Layout Randomization
(ASLR) techniques [6], [17], [76] randomize the base address
of the stack to make the address of the individual stack
objects unpredictable. This strategy is insufficient to disrupt
attacks that solely rely on the relative distance or reuse
between stack objects. To overcome this limitation, fine-grained
ASLR techniques [18], [33] introduce small random gaps
between stack frames and between buffer and nonbuffer stack
objects [33]. Unlike StackArmor, this strategy alone provides no
isolation, offers limited entropy to defend against sophisticated
(e.g., guessing or spraying) attacks, and is susceptible to
information leakage when using static gaps [33]. Finally, while
sharing many of the abstractions used in prior ASLR and
shadow stack techniques—including isolation, randomization,
and buffer detection—StackArmor is the first comprehensive
stack protection technique for binaries.

Protection from generic memory errors. Generic memory
error protection systems have been the subject of a vast body of
research in the last decade. Unlike StackArmor, many popular
techniques—including data flow integrity [23], write integrity
testing [10], bounds checkers [11], [40], [81], and memory
safe environments [35], [41], [42], [48], [56]—all require
access to the source code or recompilation. At the binary level,
many techniques such as Control-Flow Integrity (CFI) [8],
[82], Instruction Set Randomization (ISR) [61], ROP protection
systems [25], [60], and Dynamic Taint Analysis (DTA) [29],
[58] can stop various control-flow diversions, but, unlike
StackArmor, offer no protection against corruption of noncontrol
data. In addition, techniques like DTA [29], [58], multivariant
execution [32], [66], [67], and memory error checking tools
such as Valgrind [57] and Dr. Memory [21] typically incur per-
formance overheads of an order of magnitude or more. Finally,
recent binary-level protection systems such as BinArmor [72]
rely on dynamic data structure reverse engineering techniques
to instrument legacy binaries, with protection and accuracy
guarantees subject to the coverage of the dynamic analysis. In

12

addition, BinArmor [72] is tailored to buffer overflows and,
unlike StackArmor, cannot address temporal attacks.

Protection from temporal attacks. Prior temporal attack
protection systems focus on both use-after-free and uninitial-
ized read vulnerabilities. Systems in the former category are
generally targeted towards heap-based vulnerabilities, with
techniques ranging from garbage collection [19], [63] to secure
allocation [9], [15], [42], [54], [59] and dynamic memory
checking [21], [22], [57], [68]. The first two classes are
not directly applicable to the stack, although StackArmor
does borrow ideas from prior secure heap allocator designs.
Similar to many secure allocators [15], [54], [59], StackArmor
enforces a fully randomized allocation strategy, with a sparse
page layout [59] and a single object per page(s) [54] to
enforce probabilistic memory safety. Unlike type-safe allocation
strategies [9], [42], in turn, StackArmor does not allow type-
safe memory reuse because doing so is more expensive and
makes uninitialized stack reads more predictable. Compared
to prior designs, however, StackArmor’s allocator is much
simpler (frames are preallocated) and more efficient (the
self-managing frame map eliminates expensive bookkeeping
and lookups), thanks to the inherently bounded and dynamic
nature of the stack. Dynamic memory checking tools [21],
[22], [57], [68], in turn, can generally operate on the stack,
offer pseudo-deterministic detection guarantees, and also often
detect uninitialized reads [21], [57], [79]. Unlike StackArmor,
however, they typically incur very high overhead. Other
more lightweight uninitialized read detection techniques exist,
but they generally sacrifice precision for performance [15],
[47]. While StackArmor can only protect (and not detect)
against uninitialized reads, it thwarts arbitrary attacks using a
combination of probabilistic (randomization) and deterministic
(zero initialization) strategies. The latter, in turn, is directly
comparable to secure deallocation [27], which zeroes out
memory blocks at deallocation time. Even though this approach
can also protect against nonreuse-based temporal violations,
it is very expensive on the stack [27]. StackArmor exploits
the allocation context to reduce the number of initializations
(and thus the overhead) using definite assignment analysis—
implemented at the binary level in contrast to prior source-level
strategies [35], [41], [42], [46], [48].

VII. CONCLUSION

Nearly two decades after the first stack smashing attack,
performance concerns still induce modern compilers to ship
with weak stack protection mechanisms, ultimately resulting
in binaries being left at the mercy of the attackers. This paper
presented StackArmor, a more comprehensive stack protection
technique which offers a practical solution to this problem.
Unlike prior systems, StackArmor can efficiently protect against
arbitrary spatial and temporal stack-based attacks, operates
entirely at the binary level, and supports policy-driven defenses
to allow end users to tune the performance-security tradeoff.
To fulfill its goals, StackArmor abandons the traditional stack
organization and relies on a combination of randomization,
isolation, and zero initialization—efficiently balanced using
static analysis—to create the illusion that stack objects are
drawn from a fully randomized space. Our experimental results
confirm that StackArmor is practical, efficient, and provides
more comprehensive protection than all the prior binary- and
source-level solutions.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their comments. This work has been supported by the
Rosetta project funded by ERC (ERC Starting Grant #258108)
and by the Re-Cover project funded by NWO.

REFERENCES

[1] “Apache benchmark,” http://httpd.apache.org/docs/2.0/programs/ab.html.
[2] “memslap,” http://docs.libmemcached.org/bin/memslap.html.
[3] “pyftpdlib,” https://code.google.com/p/pyftpdlib.
[4] “SendEmail,” http://caspian.dotconf.net/menu/Software/SendEmail.
[5] “SysBench,” http://sysbench.sourceforge.net.
[6] “ASLR: Leopard versus Vista,” http://blog.laconicsecurity.com/2008/01/

aslr-leopard-versus-vista.html, 2008.
[7] “Switching from ”-fstack-protector” to ”-fstack-protector-strong” in

Fedora 20,” http://fedorahosted.org/fesco/ticket/1128, 2013.
[8] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity

principles, implementations, and applications,” ACM Trans. on Inf. and
System Security, vol. 13, no. 1, 2009.

[9] P. Akritidis, “Cling: A memory allocator to mitigate dangling pointers,”
in Proc. of the 19th USENIX Security Symp., 2010.

[10] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in Proc. of the IEEE Symp. on Security
and Privacy, 2008.

[11] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors,” in Proc. of the 18th USENIX Security Symp., 2009.

[12] K. Anand, M. Smithson, A. Kotha, K. Elwazeer, and R. Barua,
“Decompilation to compiler high IR in a binary rewriter,” University of
Maryland, Tech. Rep., 2010.

[13] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and
R. Barua, “A compiler-level intermediate representation based binary
analysis and rewriting system,” in Proc. of the 8th ACM European
Conference on Computer Systems, ser. EuroSys’13, 2013.

[14] R. Bartels, “The rank version of von Neumann’s ratio test for random-
ness,” J. Am. Statist. Assoc., vol. 77, no. 377, 1982.

[15] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic memory safety for
unsafe languages,” in Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation, 2006.

[16] A. R. Bernat and B. P. Miller, “Anywhere , Any-Time Binary Instru-
mentation,” in Proc. of the 10th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools, ser. PASTE’11, 2011.

[17] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a board range of memory error exploits,”
in Proc. of the 12th USENIX Security Symp., 2003.

[18] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in Proc. of the
14th USENIX Security Symp., 2005.

[19] H.-J. Boehm, “Bounding space usage of conservative garbage collectors,”
in Proc. of the 29th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, 2002.

[20] P. Broadwell, M. Harren, and N. Sastry, “Scrash: A system for generating
secure crash information,” in Proc. of the 12th USENIX Security Symp.,
2003.

[21] D. Bruening and Q. Zhao, “Practical memory checking with Dr. Memory,”
in Proc. of the Ninth Int’l Symp. on Code Generation and Optimization,
2011.

[22] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle:
Early detection of dangling pointers in use-after-free and double-free
vulnerabilities,” in Proc. of the 2012 Int’l Symp. on Software Testing
and Analysis, 2012.

[23] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, ser. OSDI ’06, 2006.

13

http://httpd.apache.org/docs/2.0/programs/ab.html
http://docs.libmemcached.org/bin/memslap.html
https://code.google.com/p/pyftpdlib
http://caspian.dotconf.net/menu/Software/SendEmail
http://sysbench.sourceforge.net
http://blog.laconicsecurity.com/2008/01/aslr-leopard-versus-vista.html
http://blog.laconicsecurity.com/2008/01/aslr-leopard-versus-vista.html
http://fedorahosted.org/fesco/ticket/1128

[24] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek, “Linux kernel vulnerabilities: State-of-the-art defenses and
open problems,” in Proc. of the Second Asia-Pacific Workshop on Systems,
2011.

[25] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “Ropecker: A
generic and practical approach for defending against ROP attacks,” in
Proc. of the 21th Annual Network and Distributed System Security Symp.,
2014.

[26] T.-C. Chiueh and F.-H. Hsu, “RAD: A compile-time solution to buffer
overflow attacks,” in Proc. of the 21st Int’l Conf. on Distributed
Computing Systems, 2001.

[27] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum, “Shredding your
garbage: Reducing data lifetime through secure deallocation,” in Proc.
of the 14th USENIX Security Symp., 2005.

[28] M. L. Corliss, E. C. Lewis, and A. Roth, “Using DISE to protect
return addresses from attack,” in Proc. of the Workshop on Architectural
Support for Security and Anti-Virus, 2004.

[29] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham, “Vigilante: End-to-end containment of internet worms,”
in Proc. of the 20th ACM Symp. on Oper. Systems Prin., 2005.

[30] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static detection of
vulnerabilities in x86 executables,” in Computer Security Applications
Conference, 2006. ACSAC’06. 22nd Annual. IEEE, 2006.

[31] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattle,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proc. of the
Seventh USENIX Security Symp., 1998.

[32] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: A secretless
framework for security through diversity,” in Proc. of the 15th USENIX
Security Symp., 2006.

[33] A. K. Cristiano Giuffrida and A. S. Tanenbaum, “Enhanced operat-
ing system security through efficient and fine-grained address space
randomization,” in Proc. of the 21st USENIX Security Symp., 2012.

[34] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-
flow integrity for commodity operating system kernels,” in Proc. of the
35th IEEE Symp. on Security and Privacy, 2014.

[35] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual
architecture: A safe execution environment for commodity operating
systems,” in Proc. of the 21st ACM Symp. on Oper. Systems Prin., 2007.

[36] CVE-2008-0063, “Kerberos stack-based information leak,” http://web.
nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-0063, 2008.

[37] CVE-2010-0262, “Microsoft office arbitrary code execution vulnerability
due to uninitialized stack variable,” http://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2010-0262, 2010.

[38] CVE-2012-5976, “Asterisk stack-based buffer overflow,” http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2012-5976, 2013.

[39] CVE-2013-4368, “Xen stack-based information leak,” http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2013-4368, 2013.

[40] D. Dhurjati and V. Adve, “Backwards-compatible array bounds checking
for C with very low overhead,” in Proc. of the 28th Int’l Conf. on Software
Eng., 2006.

[41] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: Enforcing alias
analysis for weakly typed languages,” in Proc. of the ACM SIGPLAN
Conf. on Programming Language Design and Implementation, 2006.

[42] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory safety
without runtime checks or garbage collection,” in Proc. of the ACM
SIGPLAN Conf. on Languages, Compilers, and Tools for Embedded
Systems, 2003.

[43] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory safety
without garbage collection for embedded applications,” ACM Trans.
Embed. Comput. Syst., 2005.

[44] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI:
Software guards for system address spaces,” in Proc. of the Seventh
Symp. on Operating Systems Design and Implementation, 2006.

[45] H. Etoh and K. Yoda, “ProPolice - Improved stack smashing attack
detection,” IPSJ SIGNotes Computer Security, vol. 14, 2001.

[46] N. G. Fruja, “The correctness of the definite assignment analysis in C#,”
in Proc. of the Second Int’l Workshop on .NET Technologies, 2004.

[47] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum, “Practical automated
vulnerability monitoring using program state invariants,” in Proc. of the
Int’l Conf. on Dependable Systems and Networks, 2013.

[48] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of C,” in Proc. of the USENIX Annual
Technical Conf., 2002.

[49] Y. Joey, “Merge stack alignment branch,” https://gcc.gnu.org/ml/gcc-
patches/2008-04/msg00349.html, 2008.

[50] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. of the Third Int’l Symp.
on Code Generation and Optimization, 2004.

[51] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,” in Proc.
of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation, 2007.

[52] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL:
Efficient static binary instrumentation for Linux,” in Proc. of the Int’l
Symp. on Performance Analysis of Systems and Software, 2010.

[53] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proc. of the 17th Annual Network
and Distributed System Security Symposium, ser. NDSS’10, 2010.

[54] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn, “Archipelago:
Trading address space for reliability and security,” in Proc. of the 13th
Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems, 2008.

[55] M. Matz, J. Hubi, A. Jaeger, and M. Mitchell, “System V Application
Binary Interface. AMD64 Architecture Processor Supplement.” 2013.

[56] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” in Proc. of the 29th ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, 2002.

[57] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proc. of the Third Int’l ACM
SIGPLAN Conf. on Virtual Execution Environments, 2007.

[58] J. Newsome and D. Song, “Dynamic taint analysis: Automatic detection,
analysis, and signature generation of exploit attacks on commodity
software,” in Proc. of the Network and Distributed Systems Security
Symposium, ser. NDSS’05, 2005.

[59] G. Novark and E. D. Berger, “DieHarder: Securing the heap,” in Proc.
of the 17th ACM Conf. on Computer and Commun. Security, 2010.

[60] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in Proc. of the 22nd
USENIX Security Symp., 2013.

[61] G. Portokalidis and A. D. Keromytis, “Fast and practical instruction-set
randomization for commodity systems,” in Proc. of the 26th Annual
Computer Security Applications Conf., 2010.

[62] M. Prasad and T. cker Chiueh, “A binary rewriting defense against
stack-based buffer overflow attacks,” in Proc. of the USENIX Annual
Technical Conf., 2003.

[63] J. Rafkind, A. Wick, J. Regehr, and M. Flatt, “Precise garbage collection
for C,” in Proc. of the Eighth Int’l Symp. on Memory management,
2009.

[64] C. Rosier, “Support for dynamic stack realignment + VLAs
for x86,” http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-
20120702/146062.html, 2014.

[65] B. G. Roth and E. H. Spafford, “Implicit buffer overflow protection using
memory segregation,” in Proc. of the Sixth Int’l Conf. on Availability,
Reliability and Security, 2011.

[66] B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner, and M. Franz,
“Multi-variant program execution: Using multi-core systems to defuse
buffer-overflow vulnerabilities,” in Proc. of the Int’l Conf. on Complex,
Intelligent and Software Intensive Systems, 2008.

[67] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: Intrusion
detection using parallel execution and monitoring of program variants
in user-space,” in Proc. of the Fourth European Conf. on Computer
Systems, 2009.

[68] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proc. of the USENIX Annual
Technical Conf., 2012.

14

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-0063
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-0063
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-0262
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-0262
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5976
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5976
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4368
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4368
https://gcc.gnu.org/ml/gcc-patches/2008-04/msg00349.html
https://gcc.gnu.org/ml/gcc-patches/2008-04/msg00349.html
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120702/146062.html
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120702/146062.html

[69] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proc. of the 14th ACM Conf.
on Computer and Communications Security, 2007.

[70] S. Sinnadurai, Q. Zhao, and W.-F. Wong, “Transparent runtime shadow
stack: Protection against malicious return address modifications,” Uni-
versity of Singapore, Tech. Rep., 2004.

[71] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures,” in Proc. of the Network and
Distributed System Symp., 2011.

[72] A. Slowinska, T. Stancescu, and H. Bos, “Body Armor for binaries:
Preventing buffer overflows without recompilation,” in Proc. of USENIX
Annual Technical Conf., 2012.

[73] M. Smithson, K. Anand, and A. Kotha, “Binary rewriting without
relocation information,” University of Maryland, Tech. Rep. November,
2010.

[74] A. Sotirov, “Heap feng shui in JavaScript,” in Black Hat Europe, 2007.
[75] B. D. Sutter, B. D. Bus, and K. D. Bosschere, “On the static analysis

of indirect control transfers in binaries,” ser. PDPTA’00, 2000.
[76] P. Team, “Overall description of the PaX project,” http://pax.grsecurity.

net/docs/pax.txt, 2008.
[77] Vendicator, “Stack Shield: A ”stack smashing” technique protection tool

[77] Vendicator, “Stack Shield: A ”stack smashing” technique protection tool
for Linux,” http://www.angelfire.com/sk/stackshield/info.html, 2001.

[78] R. Wartell, Y. Zhou, and K. Hamlen, “Differentiating code from data in
x86 binaries,” in Proc. of the 2011 European Conference on Machine
Learning and Knowledge Discovery in Databases, ser. ECML PKDD’11,
2011.

[79] D. Ye, Y. Sui, and J. Xue, “Accelerating dynamic detection of uses of
undefined values with static value-flow analysis,” in Proc. of the 11th
Int’l Symp. on Code Generation and Optimization, 2014.

[80] Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended protection
against stack smashing attacks without performance loss,” in Proc. of
the 22nd Annual Computer Security Applications Conf., 2006.

[81] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “PAriCheck: An efficient pointer arithmetic checker for C
programs,” in Proc. of the Fifth ACM Symp. on Inf., Computer and
Commun. Security, 2010.

[82] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou, “Practical control flow integrity and randomization for
binary executables,” in Proc. of the 34th IEEE Symp. on Security and
Privacy, 2013.

[83] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
Proc. of the 22nd USENIX Security Symposium, 2013.

15

http://pax.grsecurity.net/docs/pax.txt
http://pax.grsecurity.net/docs/pax.txt
http://www.angelfire.com/sk/stackshield/info.html

	Introduction
	Threat Model
	Spatial Attacks
	Temporal Attacks
	Defenses

	StackArmor
	Stack Protection Analyzer
	Definite Assignment Analyzer
	Buffer Reference Analyzer
	Stack Frame Allocator
	Binary Rewriter

	Implementation
	Binary Disassembly and Analysis
	Instrumentation
	Limitations

	Evaluation
	Security Against Spatial Attacks
	Security Against Temporal Attacks
	Performance
	Memory Usage
	Multithreading Support

	Related Work
	Conclusion
	References

